EVAL-CN0532-EBZ

Analog Devices
584-EVAL-CN0532-EBZ
EVAL-CN0532-EBZ

Fabricante:

Descripción:
Herramientas de desarrollo del sensor de aceleración MEMS IEPE Vibration Sensor

En existencias: 8

Existencias:
8 Se puede enviar inmediatamente
Plazo de entrega de fábrica:
10 Semanas Tiempo estimado de producción de fábrica para cantidades superiores a las que se muestran.
Mínimo: 1   Múltiples: 1
Precio unitario:
$-.--
Precio ext.:
$-.--
Est. Tarifa:

Precio (USD)

Cantidad Precio unitario
Precio ext.
$106.85 $106.85

Atributo del producto Valor de atributo Seleccionar atributo
Analog Devices Inc.
Categoría de producto: Herramientas de desarrollo del sensor de aceleración
RoHS:  
Bulk
Marca: Analog Devices
Tipo de producto: Acceleration Sensor Development Tools
Cantidad de empaque de fábrica: 1
Subcategoría: Development Tools
Productos encontrados:
Para mostrar productos similares, seleccione al menos una casilla de verificación
Seleccione al menos una de las casillas de verificación anteriores para mostrar productos similares en esta categoría.
Atributos seleccionados: 0

CNHTS:
8543709990
CAHTS:
8473302000
USHTS:
8473301180
MXHTS:
8473300401
ECCN:
EAR99

CN-0532 Circuit Evaluation Board (EVAL-CN0532-EBZ)

Analog Devices Inc. CN-0532 Circuit Evaluation Board (EVAL-CN0532-EBZ) provides a reference design for an IEPE-compatible interface for wideband MEMS accelerometer sensors, targeting condition-based monitoring applications. The EVAL-CN0532-EBZ is based on the ADXL1002 ±50g MEMS Accelerometer and utilizes the AD8541 CMOS Single Rail-to-Rail Amplifier as a zero gain buffer.

CN0549 Condition Based Monitoring Dev Platform

Analog Devices Inc. CN0549 Condition Based Monitoring Development Platform (CbM) employs vibration sensing growing in importance for industrial applications. Companies seek to optimize machinery lifetime and performance and reduce the cost of ownership, while some are looking to develop new business models around the provision of such information. To provide an accurate representation of machinery that needs monitoring, large datasets must be collected to determine a baseline operating point for the equipment in normal operational modes and failure conditions. Once this data is collected, an algorithm or threshold detection routine can be created to provide the correct analysis for this equipment.